ЗЕЛЕНОЕ СТЕКЛО
(57) Реферат:
Использование: для изготовления автомобильного остекленения. Сущность изобретения: зеленое стекло содержит в мас.%: оксид кремния 65-75 БФ SiO2, оксид натрия 10-15 БФ Na2O, оксид магния 1-5 БФ MgO, оксид кальция 5-15 БФ CaO, оксид железа 0,53-0,96 БФ Fe2O3, оксид железа 0,15-0,33 БФ FeO, оксид церия 0,2-1,4 БФ CO2 или зеленое стекло содержит в мас.%: оксид кремния 65-75 БФ O2, оксид натрия 10-15 БФ Na2O, оксид магния 1-5 БФ MgO, оксид кальция 5-15 БФ CaO, оксид железа 0,5-0,9 БФ Fe2O3, оксид железа 0,15-0,33 БФ FeO, оксид титана 0,02-0,85 БФ TiO2, оксид церия 0,1-1,36 БФ CeO2. Зеленое стекло может дополнительно содержать в мас.% оксид калия до 4 БФ K2O и оксид алюминия до 3 БФ Al2O3. Отношение FeO к Fe2O3 составляет 23-29%. Пропускание УФ-излучения 33-33,6%. 2 нез. п. ф-лы, 4 з. п. ф-лы, 4 табл.
Настоящее изобретение касается зеленого стекла, поглощающего инфракрасное излучение (тепловую лучистую энергию) и ультрафиолетовое излучение, в частности, составов зеленого стекла со специфическим сочетанием свойств поглощать лучистую энергию и пропускать видимый свет. Предпочтительная разновидность такого стекла характеризуется узкими интервалами значений доминантной длины волны и чистоты цвета. Настоящее изобретение, в частности, можно использовать в производстве остекления автомобилей и зданий, где желательны высокий показатель общего светопропускания в видимом диапазоне и низкие показатели интегрального пропускания солнечной лучистой энергии и ультрафиолетового излучения.
Общеизвестен способ получения натрий-кальций-силикатного стекла, поглощающего тепловую лучистую энергию, путем введения железа в состав этого стекла. Как правило, железо присутствует в стеклах одновременно в виде оксида железа (II) FeO и оксида железа (III) Fe2O3. Баланс между этими оксидами оказывает непосредственное физическое влияние на окраску и показатели светопропускания стекла. При повышении содержания оксида железа (II), (III) усиливается поглощение тепловой лучистой энергии и ослабляется поглощение ультрафиолетового излучения. Сдвиг равновесия между оксидами железа (II) и (III) в сторону более высоких концентраций первого из них изменяет желтую и желто-зеленую окраску стекла на темно-зеленую и сине-зеленую, что снижает общее светопропускание стекла в видимом диапазоне. Следовательно, для достижения усиленного поглощения стеклом тепловой лучистой энергии без ухудшения визуальной прозрачности раньше считали необходимым готовить стекла с низким общим содержанием железа при высокой степени восстановления Fe2O3 до FeO. За стекло с низким общим содержанием железа обычно принимали такое, в шихтовой рецептуре которого содержание железа составляло менее 0,70-0,75% в пересчете Fe2O3.
В патенте указано, что поглощение тепловой лучистой энергии (инфракрасного излучения) можно усилить путем включения в состав стекла повышенных количеств оксидов железа, но с той лишь оговоркой, что это приводит к снижению светопропускания в видимом диапазоне ниже величины, допускаемой для автомобильного остекления. Данный способ предусматривает две стадии: варку стекла и его осветление, на которых создаются условия сильного восстановления, с тем чтобы при заданной низкой общей концентрации железа порядка 0,45-0,65% (масс. доли) повысить относительное количество железа (II). Указанный патент рекомендует, чтобы по меньшей мере 35% железа было непременно восстановлено до FeO. Предпочтительнее всего, если до железа (II) будет восстановлено свыше 50% общего содержания железа. Дополнительно отмечено, что для поглощения ультрафиолетового излучения в составы стекол с малым общим содержанием железа и при высокой степени восстановления последнего можно добавить 0,25-0,5% (масс. доли) оксида церия. Указано, что более высокие концентрации оксида церия неприемлемы, так как это ухудшило бы все показатели стекла по светопропусканию. Так, состав N 11 относится к стеклу с низким общим содержанием железа, на 30% восстановленного до FeO, и содержащему 1% оксида церия. При толщине стекла 4 мм интегральное пропускание солнечной лучистой энергии составляет около 52% а пропускание ультрафиолетового излучения около 37% Сравнительно высокое интегральное пропускание солнечной лучистой энергии объясняется общей низкой концентрацией железа, тогда как сравнительно высокий показатель пропускания ультрафиолетового излучения обусловлен малым содержанием Fe2O3, значительная часть которого восстановлена до FeO.